Marks: $10 \times 1 = 10$

15th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY AUDITORS – August, 2014

PAPER – 4: Energy Performance Assessment for Equipment and Utility Systems

Date: 24.8.2013 Timings: 14:00-16:00 Hrs Duration: 2 Hrs Max. Marks: 100

Section - I: BRIEF QUESTIONS

(i) Answer all **Ten** questions

(ii) Each question carries **One** mark

S-1	Which loss is not considered while evaluating boiler efficiency by "Indirect Method"?
Ans	Blow down loss
S-2	What will be the synchronous speed of a VFD driven 4-pole induction motor operating at 60 Hz?
Ans	Ns = 120 x f/P = 120 x 60/4= 1800 RPM
S-3	What is the refrigerant used in a vapour absorption system with lithium bromide as an absorbent?
Ans	Water
S-4	Other than rated kW of motor and the actual power drawn, what other parameter is required to determine the percentage loading of the motor?
Ans	Motor Efficiency or rated motor efficiency
S-5	Inclined tube manometer is used for measuring gas flow in a duct when the air velocity is very high: True or False?
Ans	False.
S-6	A pump will cavitate if the NPSH _{available} . is than the NPSH _{required}
Ans	Less
S-7	To determine the effectiveness of the cooling tower, it is required to measure cooling water inlet, outlet andtemperatures.
Ans	Ambient Wet bulb
S-8	The ratio of actual heat transfer to the heat that could be transferred by heat exchanger of infinite size is termed as

Ans	Effectiveness
S-9	If the unit heat rate of a power plant is 2866 kcal/kWh ,what is the power plant efficiency?
Ans	(860/2866) x 100 = 30 %
S-10	The difference between GCV and NCV of hydrogen fuel is Zero: True or False
Ans	False

 End	of	Sectio	n -	<i>I</i>	

Section - II: SHORT NUMERICAL QUESTIONS Marks: 2 x 5 = 10

- (i) Answer all **Two** questions
- (ii) Each question carries Five marks

L-1	Hot water at 80 °C is used for room heating in a 5 Star hotel for 4 months in a year. About 200 litres per minute of hot water is maintained in circulation with the return temperature at 50 °C. The hot water is generated using a 'hot waste stream', through a Plate Heat Exchanger (PHE). The hot stream enters the PHE in counterflow direction at 95 °C and leaves at 60 °C. The area of the heat exchanger is 22 m². Calculate the LMTD and the overall heat transfer coefficient.
Ans	Heat load, Q = 200 * 60 * (80 – 50) = 360000 Kcals/hr (or) 418.7 kW
	LMTD (for counter flow) $ = \frac{(95 - 80)/(60 - 50)}{\ln (15/10)} = 3.7 ^{\circ}\text{C} $
	Overall Heat Transfer Coefficient, U = Q/(AxLMTD)
	= $418.7/(22 \times 3.7) = 5.14 \text{ kW/m}^2.^{\circ}\text{C}$ (OR) = $4420.4 \text{ kcal/hr.m}^2.^{\circ}\text{C}$
L-2	A gas turbine generator is delivering an output of 20 MW in an open cycle with a heat rate of 3440 kcal/kWh. It is converted to combined cycle plant by adding heat recovery steam generator and a steam turbine raising the power generation output to 28 MW. However, with this retrofitting and increased auxiliary consumption, the fuel consumption increases by 3% in the gas turbine.
	Calculate the combined cycle gross heat rate and efficiency.

Marks: $4 \times 20 = 80$

Ans	Gas turbine output	= 20 MW
	Combined cycle output	= 28 MW
	Heat rate in GT open cycle for 20 MW	= 3440 kcal/kwh
	Increase in fuel consumption in combined cycle operation	= 3%
	Combined cycle heat rate	= (3440 X 1.03) X(20 / 28) = 2530.8 kcal/kwh
	Combined cycle plant efficiency	= (860 / 2530.8) X 100 = 33.98%

..... End of Section - II

Section - III: LONG NUMERICAL QUESTIONS

(i) Answer all **Four** questions

The steam requirement of an export oriented unit is met by a 6 TPH oil fired package N-1 boiler generating steam at 10 kg/cm². The monthly steam consumption of the unit is 3000 tonnes.

Other data are given below:

Fuel oil composition:

Carbon = 86%; Hydrogen = 12%; Oxygen= 0.5%; Sulphur =1.5%

Specific heat of flue gases, Cp = 0.27 kcal/kg°C G.C.V. of fuel oil = 10,000 kcal/kgSp.heat of super heated water vapour = 0.45 kcal/kg°C Enthalpy of steam at 10 kg/cm² = 665 kcal/kg $= 85 \, {}^{\circ}\text{C}$ Feed water temperature % O₂ in dry flue gas = 6% Flue gas temperature at boiler outlet = 240 °C Ambient temperature $= 30^{\circ}C$ Cost of fuel oil = Rs.43 per kg.

Radiation and other unaccounted losses = 2.45%

The export oriented unit is costing its steam cost based on the fuel consumption cost with additional 10% to account for the auxiliary and consumables.

A neighbouring continuous process plant now offers to supply the required steam at 10 kg/cm2 to the export oriented unit at a cost of Rs 3300 per tonne.with a condition that all the condensate will be returned back.

Calculate the following:

- a) Boiler efficiency
- b) Cost advantage per tonne of availing steam from neighbouring plant in place of in-house generation and also monthly monetary saving.

Ans | First calculate the efficiency of Boiler (in EOU)

```
Theoretical air required =
= 11.6 C + 34.8 (H - O/8) + 4.35 S
= [11.6 X 86 + 34.8 (12 - 0.5/8) + 4.35 X 1.5] x 1/100
= 14.195 = Say 14.2

% Excess Air = [% O_2 / (21 - % O_2)] X 100
= [6 / (21 - 6)] X 100 = 40%
```

AAS = Actual amount of air supplied = 14.2 X 1.4 = 19.88 kg per kg. of fuel oil

Mass of dry flue gas m_{dfg} = Mass of combustion gases due to presence of C,H,S +Mass of N_2 supplied

$$= (0.86 \times 44/12) + (0.015 \times 64/32) + [(19.88 - 14.2) \times 23/100] + (19.88 \times 77/100)$$

= 19.797

Mass dry flue gas ,say = 19.8 Kg / kg fuel

Or

Alternatively mass of dry flue gas =
$$(AAS + 1) - 9 H$$

= $(19.88 + 1) - 9 \times 0.12 = 19.8 \text{ Kg./Kg. fuel}$

L1 = % heat loss in dry flue gas =
$$[m_{dfg} x Cp x (T_q - T_a) / GCV] x 100$$

L1 = **11.23**%

L2 = Loss due to presence of hydrogen forming water vapour

10000

L2 = **7.33**%

L3 = Radiation and other unaccounted losses = 2.45%

Total losses = L1 + L2 + L3= 11.23 + 7.33 + 2.45 = 21.05 %

Efficiency of the EOU boiler by indirect method

= 100 - 21.05 = 78.99 %

= Say 79 %

Secondly calculate the cost of steam in the EOU plant

Evaporation Ratio = $[(n \times GCV) / (h_g - h_f)] \times 100$

 $= [(0.79 \times 10000)] / (665 - 85)] \times 100$

= 13.62 kg Steam / kg. Fuel

Fuel oil consumption = 1000 / 13.62 kg. per tonne of steam

Fuel oil consumption = 73.42 kg./tonne of steam gen

Cost of fuel oil. = Rs. 43 per kg

Cost of steam in EOU = Fuel cost + 10% fuel cost

= 73.42 x 1.10 x 43 = Rs.3472.8 per tonne

Selling cost of steam from neighboring plant = Rs 3300 per tonne

Cost advantage = 3472.8 - 3300 = Rs.172.8 per tonne

Annual Savings = Rs.172.8 per tonne x 3000tonne/month X 12 month

= Rs.62.2 Lacs

N-2

Ans

a) The operating parameters of a Vapour Compression Refrigeration system are indicated below.

Parameter	Chiller side	Condenser side
Water Flow (m ³ /hr)	89	87
Inlet Temperature (°C)	12.2	33.3
Outlet Temperature (^O C)	8.9	37.6
Density (kg/m ³)	1000	990

Find the COP of the Refrigeration system ignoring heat losses.

- **b)** A 6 pole, 415 volt, 3 Φ, 50 Hz induction motor delivers 22 kW power at rotor shaft at a speed of 950 rpm with PF of 0.9. The total loss in the stator including core, copper and other losses, is 2 kW. Calculate the following.
 - i) Slip
 - ii) Rotor Copper Loss
 - iii) Total Input to motor
 - ivi) Line current at 415 V and motor pf of 0.9
 - v) Motor operating efficiency

a) Refrigeration Effect = $89 \times 1000 \times (12.2 - 8.9)$

= 293700 kcal/hr

Condenser load = $87 \times 990 \times (37.6 - 33.3)$

= 370359 kcal/hr

Compressor work = Condenser load – Refrigeration effect

= 370359 - 293700 = **76659 Kcal/hr**

C.O.P. = Refrigeration Effect/ Compressor work

= 293700/76659 = **3.83**

b) Synchronous Speed = $(120 \times 50 / 6) = 1000 \text{ rpm}$

Motor Speed = 950 rpm

(i) Slip = (1000 - 950) / 1000 = 5%

Power input to rotor = $\{ (22/(1-0.05)) \} = 23.16 \text{ kW}$

(ii) Rotor Copper Loss = $(0.05 \times 23.16) = 1.158 \text{ kW}$

 \mathbf{Or} = 23.16-22 = 1.16 kW

(iii) Total Input to motor = (23.16 + 2) = **25.16 kW**

(iv) Line Current = $(25.16 \times 1000) / (\sqrt{3} \times 415 \times 0.9)$

= 38.86 Amps

(v) Motor Efficiency = (22/25.16) = **87.44** %

N-3 A common plant facility is installed to provide steam and power to textile and paper plant with a co-generation system. The details and operating parameters are given below:

Other data:

- Turbine, alternator and other losses = 8%
- Specific steam consumption in paper industry= 5 Tons/Ton of paper
- Specific power consumption in paper industry= 550 kWh/Ton of paper

Calculate:

- i. Coal consumption in boiler per hour or per day.
- ii. Power generation from co-generation plant
- iii. If 10% is auxiliary power consumption in co-generation plant, how much power

is consumed by the textile industry per hour? iv. What is the gross heat rate of turbine? Ans i) Boiler efficiency = Steam production (steam enthalpy- Feed water enthalpy) / Quantity of coal x G.C.V. of coal Quantity of coal = $60,000 (810-80)/0.8 \times 5000$ = 10.95 tons/hr.ii) Gross power generation from co-generation plant Total enthalpy input to turbine $= 60,000 \times 810 = 48.6 \text{ Million kcal.}$ Total enthalpy out put through back pressure = 60,000* 660 = 39.6 Million kcal Enthalpy difference = 48.6-39.6 = 9 Million kcal/hr Turbine, alternator and other losses =8% or 9x0.08 = 0.72 Million kcal/hr Useful energy for power generation = 9 - 0.72= 8.28 Million kcal/hr Power generation from co-generation plant = $8.28 \times 10^6/860 = 9628kWh$ iii) If 10% is auxiliary power consumption in co-generation plant, power consumed by textile industry $= 9628 \times 0.10 = 962.8 \text{kWh}$ 10% of total power generation Total power consumed by industries = 9628 - 962.8 = 8665.2kWh Total steam consumption in paper plant 40 tons/hr. and specific steam consumption 5 ton/ton of paper. So Paper production per hour is 8 tons. Specific power consumption = 550 kWh/ton.Total power consumption in paper industry = 8×550 = 4400kWhTotal power consumption in textile industry = 8665.2-4400 = 4265.2 kWh iv) Gross heat rate= Input enthalpy – output enthalpy/ gross generation $=(48.6-39.6)\ 10^6/\ 9628 = 934.7\ kCal/kWh$ N-4 To attempt ANY ONE OF THE FOLLOWING among A, B, C and D Α A captive thermal plant is delivering an output of 29 MW at the generator terminal. The generator efficiency is 96%. The steam generated in a utility boiler with an efficiency of 86% at 105 ata and 485°C is fed to the turbine. The turbine exhausts steam to condenser maintained at 0.1 ata and 45.5°C. The feed water temperature at inlet to the boiler is 105°C.

ms = Steam flow through turbine

```
= (Turbine output x 860)
                         (h_2 - h_3) Turbine enthalpy drop
                   h_2 = Enthalpy at turbine inlet = 795 kcal/kg

h_3 = Enthalpy at turbine exhaust = 560.75 kcal/l
                                                       = 560.75 \text{ kcal/Kg}.
                   m_s = 31308 \times 860 / 795 - 560.75 = 114940.78 kg/Hr.
                                                        = 114.94 TPH
      ii) Steam flow through the turbine
                                                   Say = 115 TPH
      iii)
            Turbine heat rate
                                    = Heat input to turbine / Generator output
                                    = [m_s (h_2 - h_1)] / 29000
                                    = 115000 (795 - 105) / 29000
                                    = 2736.2 kcal/ kWh
      iv)Unit heat rate = Turbine heat rate / Efficiency of boiler
      Unit heat rate = 2736.2 / 0.86 = 3181.63 \text{ kcal/ kWh}
                                                 Or
 В
      In a textile unit a stenter is delivering 80 meters/min of dried cloth at 5%
      moisture. The moisture of wet cloth at inlet is 50%. The stenter is heated by
      steam at 7 kg/cm<sup>2</sup> with inlet enthalpy of 660 kcal/kg, and condensate exits the
      stenter at 105 kcal/kg.
      Other data

    Latent heat of water evaporated from the wet cloth = 540 kcal/kg

    Weight of 10 meters of dried cloth

                                                                  = 1 kg

    Inlet temperature of wet cloth

                                                                  = 27^{\circ}C
      • Outlet temperature of dried cloth at stenter outlet = 80°C.
      i)
             Estimate the steam consumption in the stenter considering a dryer
              efficiency of 48%.
             Determine the specific steam consumption kg/kg of dried cloth
      Output of stenter
                                   = 80 mts/min.
Ans
                                    = 80 \times 60 / 10 = 480 \text{ Kg/hr}.
      Moisture in the dried output cloth = 5\%
             Wt of bone dry cloth = 480 \times (1 - 0.05)
                    i.e. W
                                    = 456 \text{ Kg/hr}.
                                =moisture in outlet cloth
             m_{o}
                                =(480 - 456)/456 = 0.0526 Kg./Kg. of bone dried cloth
             Inlet moisture = 50%
             Wt of inlet cloth = 456 / (1 - 0.50) = 912 \text{ Kg./hr.}
                                = moisture in inlet cloth
                                = 912 \times 0.5 / 456 = 1.00 \text{ Kg./Kg.} bone dried cloth
             Inlet temperature of cloth = 27^{\circ}C
             Final temperature of cloth = 80^{\circ}C
```

Heat load on the dryer = $w \times (m_i - m_o) \times [(T_{out} - T_{in}) + 540] \text{ Kcal/hr.}$

Heat load on the dryer = 456 (1 - 0.0526) X [(80 - 27) + 540]

= 2,56,184.5 Kcal/hr

Efficiency of the dryer = 48%

Heat input to the stenter = 2,56,184.5 / 0.48 = 5,33,717.71 Kcal/hr

Steam consumption in

the stenter = 5,33,717.71 / (660 - 105)

= 961.7 Kg/hr

Steam consumption per Kg. of dried cloth at stenter outlet cloth

= 961.7 / 480

= 2 Kg./Kg. dried cloth

Or

C Determine the **cooling load** of a commercial building for the following given data.

Outdoor conditions :

DBT = 35°C; WBT = 25°C; Humidity = 18 g of water / kg of dry air

Desired indoor conditions:

DBT = 25.6° C; RH = 50 %; Humidity = 10 g of water / kg of dry air

Total area of wall $= 40 \text{ m}^2$

Total area of window = $20m^2$

 $U - Factor (Wall) = 0.33 W / m^2 K$

 $U - Factor (Roof) = 0.323 W / m^2 K$

 $U-factor\ [fixed\ windows\ with\ aluminum\ frames\ and\ a\ thermal\ break\]\ = 3.56\ W\ /\ m^2K$

- 15 m x 25 m roof constructed of 100 mm concrete with 90 mm insulation & steel decking.
- CLTD at 17:00 h :Details : Wall = 12°C Roof = 44°C Glass Window = 7°C
- SCL at 17 : 00 h : Details : Glass Window = 605 W/m^2
- Shading coefficient of Window = 0.74
- Space is occupied from 8:00 to 17:00 h by 25 people doing moderately active work.
- \bullet Sensible heat gain / person = 75 W ; Latent heat gain / person = 55 W ; CLF for people = 0.9
- Fluorescent light in space = 21.5 W/m² FLF for lighting = 0.9

- Ballast factor details = 1.2 for fluorescent lights & 1.0 for incandescent lights
- Computers and office equipment in space produces 5.4 W/m² of sensible heat
- One coffee maker produces 1050 W of sensible heat and 450 W of latent heat.
- Air changes / hr of infiltration = 0.3
- Height of building = 3.6 m

Ans I External Heat Gain

(i) Conduction heat gain through the wall =U - factor x net area of wall x CLTD

$$=[0.33 \times 40 \times 12] = 158.4 \text{ W}$$

(ii) Conduction heat gain through the roof =U – factor x net area of roof x CLTD

$$=0.323 \text{ x} (15 \text{ x} 25) \text{ x} 44 = 5329.5 \text{ W}$$

(iii) Conduction heat gain through the windows =U – factor x net area of windows x CLTD

$$= (3.56 \times 20 \times 7) = 498.4 \text{ W}$$

(i) Solar radiation through glass = Surface area c Shading coefficient x SCL

$$=(20 \times 0.74 \times 605) = 8954 \text{ W}$$

II Internal Heat Gain

- (i) Heat gain from people =Sensible heat gain + Latent heat gain
 - Sensible heat gain =(No.of people x Sensible heat gain / person x CLF)

$$=(25 \times 75 \times 0.9) = 1687.5 \text{ W}$$

Latent heat gain =No.of people x Latent heat gain / person

$$=(25 \times 55) = 1375 \text{ W}$$

Therefore, Heat gain from people=(1687.5 + 1375) = 3062.5 W

(ii) Heat gain from lighting =(Energy input x Ballast factor x CLF)

$$=21.5 \text{ x} (15 \text{ x} 25) = 8062.5 \text{ W}$$

Therefore, heat gain from lighting = $(8062.5 \times 1.2 \times 0.9) = 8707.5 \text{ W}$

(iii) Heat generated by equipment:

Sensible heat generated by coffee maker =1050 W

Latent heat generated by coffee maker =450 W

Sensible heat gain by computers and office equipment = 5.4 x 375 = 2025 W

Therefore, Heat generated by equipment = 3525 h

(iv) Heat gain through air infiltration=(Sensible heat gain + Latent heat gain)

Sensible heat gain = $(1210 \text{ x airflow x } \Delta T)$

Airflow = (Volume of space x air change rate) / 3600

 $= \{ (15 \times 25 \times 3.6) \times 0.3 \} / 3600$

 $=0.1125 \text{ m}^3 / \text{ s}$

Therefore, sensible heat gain = $1210 \times 0.1125 \times (35 - 25.6) = 1279.58 \text{ W}$

Latent heat gain $=3010 \times 0.1125 \times (18-10) = 2709 \text{ W}$

No	Space Load Components	Sensible Heat Load (W)	Latent Heat Load (W)
1	Conduction through exterior wall	158.4	
2	Conduction through roof	5 329.5	
3	Conduction through windows	498.4	
4	Solar radiation through windows	8954	
5	Heat gained from people	1 687.5	1 375
6	Heat gained from lighting	8 707.5	
7	Heat gained from equipment	3 075	450
8	Heat gained by air infiltration	1 279.58	2 709
Total space cooling load		29 689.88	4 534

Or

During heat balance of a 5 stage preheater Kiln in a cement plant, the following data was measured at Preheater (PH) Fan Inlet and clinker cooler vent air fan inlet:

Parameter	Temperature	Static	Avg.	Specific	Gas	Duct
measured		Pressure	Dynamic	heat	Density	Area
			Pressure		at STP	
Unit	°C	(P _s) mm	(P _d) mm	kcal/kg	kg/m ³	m^2
		WC	WC	°C		
PH Exit Gas	316	-650	28.6	0.248	1.4	2.27
at PH fan Inlet						
Clinker cooler	268	-56	9.7	0.24	1.29	2.01
vent air at						
cooler Stack						
Fan Inlet						

Note: take Pitot tube constant as 0.85, reference temperature 20 $^{\rm o}C$ and atmospheric pressure 9908 mm WC.

Other Data

Clinker	Designed specific	NCV of	Cost of	Annual
Production	volume of PH gas	Coal	coal	Operation
TPH	Nm ³ /kg clinker	kcal/kg	Rs./ton	hrs
45.16	1.75	5500	5500	8000

Calculate the following:

- i. Specific volume of PH gas as well as cooler vent air (Nm³/kg clinker)
- ii. Heat loss in pre-heater exit gas (kcal/kg clinker)
- iii. Heat loss in cooler vent air (kcal/kg clinker)
- iv. If the measured specific volume of PH gas (Nm³/kg clinker) exceeds the design value, calculate the heat loss (kcal/kg clinker) and annual monetary loss due to excessive specific volume of PH gas.

Ans i. Density of Pre-heater gas at PH Fan Inlet at prevailing temp., pressure conditions:

$$\rho_{T,P} = \rho_{STP} X \frac{273 X (9908 + P_s)}{(273 + T) X 10334}$$

$$\rho_{T,P} = 1.40 X \frac{273 X (9908 - 650)}{(273 + 316) X 10334} = 0.581 \text{ kg/m}^3$$

Velocity of PH gas

$$v = P_{t} \sqrt{\frac{2g P_{d}}{\rho_{T,P}}}$$

$$v = 0.85 \sqrt{\frac{2X9.8X28.6}{0.581}} = 26.4 \text{ m/sec}$$

Volumetric flow rate of PH gas = velocity X duct cross-sectional area

Specific volume of PH gas = $215640 \times 0.58/1.4$

 $= 89491 \text{ Nm}^3/\text{hr}$

 $= 89491/45160 = 1.98 \text{ Nm}^3/\text{kg clinker}$

Similarly density of cooler vent air at cooler vent air fan Inlet at prevailing temp., pressure conditions:

$$\rho_{T,P} = \rho_{STP} X \frac{273 X (9908 + P_S)}{(273 + T) X 10334}$$

$$\rho_{T,P} = 1.29 \,\mathrm{X} \frac{273 \,\mathrm{X} (9908 - 56)}{(273 + 268) \,\mathrm{X} 10334} = 0.62 \,\mathrm{kg/m^3}$$

Velocity of cooler vent air in the fan inlet duct

$$v = P_t \sqrt{\frac{2g P_d}{\rho_{T,P}}}$$

$$v = 0.85 \sqrt{\frac{2 \times 9.8 \times 9.7}{0.62}} = 14.88 \text{ m/sec}$$

Volumetric flow rate of PH gas = velocity X duct cross-sectional area

= 14.88 X 2.01 = 29.9 m³/sec = 29.9 X 3600 = 107640 m³/hr

Specific volume of cooler vent air = $107640 \times 0.62/1.29$

= $51734 \text{ Nm}^3/\text{hr}$ = $51734/45160 = 1.15 \text{ Nm}^3/\text{kg clinker}$

ii)Heat loss in PH exit gas

Q1 =
$$m_{ph}$$
 $c_p \Delta T$ (C_p of PH gas = 0.248 kcal/kg °C)
Q1= 1.98 X 1.4 X 0.248 x (316-20)
= **203.5 kcal/kg clinker**

iii) Heat loss in cooler vent air

Q2 =
$$m_{CA} c_p \Delta T$$
 (C_p of cooler vent air = 0.24 kcal/kg °C)
Q2= 1.15 x 1.29 x 0.24 x (268-20)
= **88.3 kcal/kg clinker**

iv) Heat Loss due to excess specific volume of PH gas

$$V_{excess} = 1.98 - 1.75 = 0.23$$
 Nm³/kg clinker
Heat loss Q = 0.23 x 1.4 x 0.248 x (316-20) = 23.6 kcal/kg clinker

Equivalent coal saving = 23.6/5500 = 0.0043 kg coal/kg clinker or ton of coal/ton of clinker

Coal saving in one hour = $0.0043 \times 45.16 = 0.194 \text{ TPH}$

Annual Coal Saving = $0.194 \times 8000 = 1552$ tons of coal per annum

Annual Monitory Saving = $1552 \times 5500 = Rs. 85.36$ lakhs

----- End of Section - III -----